

Presentation of Hungary

at the 7th Review Meeting of the Convention on Nuclear Safety

Country Group 4 31/03/2017, Vienna, IAEA Presented by: Dr. Gábor Petőfi Hungarian Atomic Energy Authority

Presentation of Hungary at the 7th Review Meeting of the CNS

Presentation Outline

- 1. Hungarian Nuclear Programme
- 2. Changes in the nuclear programme
- 3. Safety improvements
- 4. Response to challenges and suggestions of the 6th review meeting and IAEA missions
- 5. Vienna declaration
- 6. Fukushima follow-up
- 7. Current and future challenges
- 8. Good practices and areas of good performance
- 9. Answers to questions raised from Peer Review of National Report
- 10. Updates to national report since publication
- 11. Conclusions

1. Hungarian Nuclear Programme

Hungary's National Energy Strategy – Role of nuclear energy

- Major role of nuclear power
- In 2016: 51,3% of gross electricity production and 36,5% of electricity consumption
- Three main pillars of nuclear energy policy

Summary of basic information on the national programme

- Advanced infrastructure
 - Legislation
 - Governmental institutions
 - Research facilities, universities
 - Technical support organizations, industry
- Broad international co-operation
 - IAEA, EU (EURATOM, ENSREG, WENRA, ENSRA, HERCA),
 OECD NEA, VVER Forum
 - Bilateral cooperation with several countries and authorities

Summary of basic information on the national programme

- Paks NPP
 - 4 units of VVER 440/213
 - Uprated power 500 Mwe
 - Load factor: 80-90%
- SFISF
 - Dry storage for 50 years
 - Modular expansion
 - 20 vaults, 9308 storage tubes
 - Vaults 21-24 under construction
 - Currently stored: 8738 SF assemblies

Summary of basic information on the national programme

- Budapest Research Reactor
 - VVER SM tank type, 10 MWth
 - Operated by Center for Energy Research
 - Experiments and isotope production
- Budapest Training Reactor
 - Pool type, 100 kWth
 - Operated by Budapest University
 - of Technology and Economics

2. Changes in the nuclear programme

Major amendments of Act on Atomic Energy (Atomic Act)

- System of public hearings for all facility level licensing
 - E.g. siting, construction, operation, decommissioning
- Determination of clients for waste storage facilities
- Increasing HAEA independence (considering IRRS results)
 - Higher salaries for officers at HAEA
 - HAEA DG is authorized to decide on some certain extrasalary contributions to the HAEA officers
 - Nuclear oversight fee shall be exclusively used to cover HAEA costs

Major Amendments of Act on Atomic Energy (cont.)

- Radiation protection
 - Change of regulatory system (centralized)
 - Implementation of new Basic Safety Standards
 - National dosimetry register
 - RP training and registered radiation protection experts
- Concerning new units
 - Use of standards during construction licensing
 - Rules of Preliminary Safety Information before construction licensing

Major Amendments of Act on Atomic Energy (cont.)

- Licensing of deviations from the design during construction (HAEA initiative)
- Government to create rules in Nuclear Safety Code
- Goal: deviations shall be categorized by the licensee (based on safety assessment), category shall be approved by HAEA:
 - Important to safety: approval by HAEA
 - Minor safety relevance: HAEA shall be informed and HAEA to oversee the implementation
- Agreement with HAEA (and IAEA) approach on modifications
- HAEA's effective independence is not affected

Amendments of Nuclear Safety Code in 2014-2015

- Implementation of Fukushima experience (mainly stress test, WENRA RLs, SSR 2/1)
 - Independence of DiD levels
 - Cliff edge
 - Extension of DEC requirements
 - Multi-units
 - Waste management in emergencies
- Siting and design requirements for new units
- Detailed content requirements for PSAR for new units

Structure of Nuclear Safety Code

Regular review of Nuclear Safety Code (2015-2016)

- Atomic Act requires 5-yearly review
- Review was carried out based on
 - National experience
 - EURATOM Nuclear Safety Directive (change)
 - IAEA Safety Standards (change)
 - WENRA Reference Levels (change)
 - Changes in regulatory system
 - Oversight of radiation protection (+ inclusion of new BSS)
 - Oversight of civil structures
- Proposals sent to Government in February 2017

Life time extension of Units 1-4 of the Paks Nuclear Power Plant

- Life time extension licences for Units 1, 2 and 3 were granted until 2032, 2034 and 2036 respectively
- Licensing of life time extension of Unit 4 is currently in progress
- Challenge 4: To complete the life extension of Unit 2, 3 and 4

Introduction of a 15-month operation cycle at the Paks NPP

*								
4 outages vs. 5 outages in a 5 year period	1 C12 C15	st vear	2nd year	3rd year.	4th year	5th year.	•	
Consequences			Results					
20% less load transient		• [• F	 Decreased Core Damage Frequency (PSA) Favourable fatigue and crack growth analysis results 					
26 days additional operation			+2% electricity production					
15% less periodic work volume		• L • 1 • 1 • 1 • 1 • 1 • 1 • 5	 Less maintenance cost 15% less collective dose 10% less overtime Decreased work accident probability Decreased maintenance human error risk 10% less radioactive waste 5% less non-radioactive waste 					
Doubled gadolinium, h enrichment, optimize	igher UC ed core	D₂ • ∃ • l	% less spent f Inchanged or	uel less neutron f	luence on RP	/ wall		
March 31, 2017, Vienna	Presentation	n of Hungary of th	at the 7th Review e CNS	Meeting		16		

Paks NPP events

Reactor protection actuation

Presentation of Hungary at the 7th Review Meeting of the CNS

Number of INES rated events

Collective dose [man'Sv]

March 31, 2017, Vienna

INES 3

INES 2

INES 1INES 0

Paks II NPP milestones

- IGA
 - Two VVER-1200 type reactors
 - Russian loan for the 80% of construction costs
- Implementation agreements
 - EPC contract
 - Operation and maintenance support contract
 - Fuel supply contract
- March 2017: EC investigations closed

- November 2014: Site investigation and evaluation license granted for Paks site
- September 2015: Preliminary safety information report
- September 2016: Environmental license granted
 - appealed at environmental authority of second instance
- October 2016: Site license application submitted
 - Regulatory decision: first half of 2017
- Next step: construction license application

3. Safety improvements

Stress test tasks status 2014-2017

18.2.2014

22.3.2017

Ready tasks

Ready and closed by HAEA	Completed by deadline	Completed 6 months before the deadline	Completed 6 months to 1 year before the deadline	Completed more than 1 year before the deadline
33	13	4	3	13
			Completed by dead Completed 6 month Completed 6 month deadline Completed more th deadline	line as before the deadline as to 1 year before the an 1 year bef <mark>o</mark> re the

Delayed stress test tasks from National Action Plan

- Task 2: construction of a new fire station
- Task 48: air-conditioning of protected emergency command centre (PCC)
- Task 49: backup emergency command centre (BCC)
- Task 40: storage computers to PCC and BCC
- Reasons: change of technical contents, unsuccessful public procurement, interrelation of tasks
- Delay in overall deadline (originally the end of 2018)
- No significant increase in safety risk

Periodic Safety Review (PSR) of Paks NPP

- Last PSR was carried out in 2007-2008
 - independently of service life extension licensing
- Safety improvement actions were completed
- Next PSR to take place in 2017-2018
- New Regulatory Guide (available at HAEA website)
 - Lists the relevant WENRA reference levels and the new IAEA considerations (SSG 25) as the minimum scope
 - New topics with Fukushima experience

4. Response to challenges and suggestions of the 6th review meeting and IAEA missions

Challenge 1: To carry out an IAEA IRRS mission foreseen for 2015

- Completed in 2015 May, most important findings
 - Independence of HAEA in terms of organization and budget
 - More effective use of graded approach
 - Enforcement policy and procedures should be revised
- Most findings were related to decentralized regulatory system
 - Resolved at January 1, 2016, when HAEA took over several tasks
- Good practices
 - Hungarian Nuclear Knowledge Data Base
 - Indicators to monitor research reactors and spent fuel facility
 - Scoring of safety significance of events
- Findings incorporated to action plans of authorities
- Follow-up expected to second half of 2018

Challenge 2: To complete the action plan drawn after the Fukushima accident and stress tests

• See slides 21-23

Challenge 3: To finalize the implementation of severe accident guidelines in all the Paks units

- SAM modifications have been completed between 2011-2014
 - External cooling of RPV
 - SA hydrogen recombiners
 - SA mobile diesel generators to implement
 SA strategy
 - SA measurements
 - Reinforcement of SFP cooling system

• SAMGs were implemented in all units after the modifications completed

Challenge 4: To complete the life extension of Unit 2, 3 and 4 of Paks NPP

- Start of operation: U1-82, U2-84, U3-86, U4-87
- Lack of original design documents, design lifetime of some SSCs was 30 years
- Main principle: safety margins shall be maintained and pre-conditions shall be met:
 - Design reconsititution
 - SAM implementation
 - Ageing management implementation
 - Monitoring of the maintenance effectiveness
 - Equipment qualification of electric and I&C

Service life extension process

- Based on US approach and in full compliance with IAEA requirements and guidance
 - Scope: passive, long lived SSCs important to safety
 - Active components managed by effective maintenance and other plant programmes
 - Review of ageing management, time limited analyses
 - Modification of operating documents and FSAR
- Licences
 - Unit 1 2012: service life extended until 2032
 - Unit 2 2014: service life extended until 2034
 - Unit 3 2016: service life extended until 2036
 - Unit 4 2017: in progress...

Challenge 5: Strengthening the education of nuclear professionals

- Nuclear lawyer education at Széchenyi István University (Győr)
- Nuclear construction engineer education at Budapest University of Technology and Economics (BME)
- HAEA initiated fellowship at the BME
- Government decision on fellowships to Russian universities

Challenge 6: Knowledge Management

- HAEA initiated a knowledge management project in compliance with SAT
- Knowledge profile database (exists, not updated yet)
- Newly implemented items
 - Intensive initial training program of newcomers
 - Inspector training process tailored to individual needs
 - Tutoring program by senior inspectors
 - Utilization of knowledge of retiring staff members (written report + interviews about specific knowledge)
 - Leadership training

Challenge 7: Updating the regulation for new NPP, mainly the guidance for siting and for severe accident

• See slides 12-13

Suggestion 1: To establish appropriate mechanisms for the retention of qualified staff of the regulatory body and to address the human resource needs for the assessment and inspection of new reactors

- Amendment of Atomic Act (2015-2016) provided
 - Higher salaries and more free days compared to other government officers
 - Extra salary contributions
 - Opportunity for the DG to determine personal salaries in certain cases
 - More flexible opportunities to support travelling to work, clothing, accommodation, health insurance, social contribution for HAEA officers

Suggestion 2: To put in place mechanisms to ensure independence of TSO when working for the regulatory body

- By contracts
 - Declaration of independence in the given regulatory procedure
 - Regulations related to the participation of sub-contractors
 - Verification of owner background of each contractor

Comments to Special Rapporteur Challenges of the 6th Review Meeting

- To minimize gaps in safety improvements
 - Hungary supports all reasonable international exchange and peer review activity (OSART, design review, IRRS, IPPAS, EPREV, stress test, TPR)
- To harmonize emergency plans and response
 - Bilateral cooperation, HERCA, exercises, RESPEC
- Better use of OPEX and regulatory experience
 - Hungary support all reasonable forums to exchange experience (VVER Forum, ENSTTI, MDEP, bilateral cooperations)

Comments to Special Rapporteur Challenges of the 6th Review Meeting

- To improve regulatory independence, safety culture and transparency
 - Strengthening effective independence (organizational and financial decisions) in the CNS
 - See proposed Good Practice 1
- To engage all countries to commit and participate in international cooperation
 - Hungarian examples
 - System of bilateral and multilateral cooperation
 - Nuclear safety education of Vietnamese inspectors

5. Vienna declaration

- Govt. Decree 118/2011 (VII.11.) on nuclear safety requirements
 - Definition of new nuclear power plant unit: "A nuclear power plant unit constructed after 1 April 2012., (Govt. Decree 118/2011)
 - Section 6 (4): safety objectives of prevention and mitigation of consequences within acceptable limits
 - Section 6 (6): safety objectives shall be addressed throughout the plant lifetime
 - Section 7 (4a): independence of the DiD levels shall be ensured to the extent reasonably achievable

- Govt. Decree 118/2011 (VII.11.)
 - DEC is part of the operational states (Volume 10 Def 163 + design requirements for existing and new units)
 - HP core melt scenarios shall be avoided (3.2.2.4400., 3a.2.2.7400.)
 - CCF
 - Possibility shall be taken into account in design and safety analyses (3.2.2.3510., 3.2.3.1700., 3.3.1.0700., 3a2.2.5600, 3a.2.3.1900., 3a.3.1.1000.)
 - Shall be minimized for I&C components (3.4.5.2900., 3a.4.5.4700.)

- Govt. Decree 118/2011 (VII.11.)
 - Limited environmental impact: shall no be need for
 - urgent protective action beyond 800 m
 - temporary action beyond 3 km
 - subsequent protective action beyond 800 m
 - any long-term restriction on food consumption
 - Large, early release shall be practically eliminated
- Implementation for existing units
 - SAM modifications are completed, SAMGs are introduced
 - Post-Fukushima modifications are being implemented

- Periodic Safety Review for all nuclear facilities
 - Verification of compliance with licensing basis
 - Using state-of-the-art international practice and methods
- Purpose
 - Identification of place for improvement
 - Determination of safety improvement actions
 - Demonstration of safety for next 10 years
- Actions
 - All reasonable actions shall be determined and scheduled
 - Timing shall be commensurate with safety significance

- Section 5 (1) of Act on Atomic Energy and Section 3 (7) of Govt. Decree 118/2011 (VII.11.)
 - Nuclear safety requirements shall be reviewed every 5 years
 - Considering state-of-the-art science, domestic and international experience
- Safety guides shall be reviewed as appropriate
 Upon regulatory decision or licensee request
- Sources
 - IAEA, WENRA, EU, CNS, OECD NEA, other countries

6. Fukushima follow-up

Post-Fukushima National Action Plan

- Developed based on
 - stress test results of Paks NPP
 - Assessment of national arrangements
- NAcP was peer reviewed in 2013 by EU
- Progress was reviewed in 2015 by EU
- Regular updates
- Current status was described in slides 21-23

7. Current and future challenges

Challenges

- Licensing and oversight of construction of new NPP units
- Implementation of the reviewed Nuclear Safety Code
- Assessment of Safety Culture at the licensee and the regulatory authority
- 3rd Periodic Safety Review of Paks NPP
- Development of requirements and regulatory tools against fraudulent and counterfeit items
- Completion of inspector training for a large number of newcomers

8. Good practices and areas of good performance

Good practice Transparency

- Invitation of all European country to the ESPOO procedure, translation of licensing documentation to 10 languages, public hearings in 8 countries
- Road show in 41 villages to describe the environmental licensing process
- Public hearings in licensing processes of all life cycle phases of nuclear facilities
- Series of educational conferences for university students "About atomic energy for everyone"
- Invitation of public to comment regulatory guidelines

Good practice Human resource development

- Recruiting 80 new inspectors
- Intensive initial training programme
 - With the involvement of TSOs, Senior experts and inspectors
 - Video recording, e-learning tools for examination
- Modification of the organization to better integrate newcomers
 - Tutoring and tailored training program within professional sections
- Preparation for inspector exam

Good performance Use of smartphone application (VESZ) for public emergency alerts (proposed by US)

- Pre-set or real-time GPS locations (user setting)
- App Store/Google Play/ Windows Phone

- Developed by National Directorate General for Disaster Management of the Ministry of the Interior
- Sends messages and signals

9. Answers to questions raised from Peer Review of National Report

(questions not answered in the previous slides)

Training Reactor and the Budapest Research Reactor (Q28-30)

- Design lifetime of BRR expires in 2023, life extension process is required to operate beyond that + PSR
- Training Reactor has no design lifetime -> PSR (2017)
- PSA is not mandatory for research reactors
- Core conversion of the Budapest Research Reactor
 - Detailed Quality Assurance Programme (phases and steps, schedule, education and training)
 - Hold points (LEU fuel Site Acceptance Test, Conversion process from HL1 to HL4 campaigns, Test campaign, Obtaining the operating license)
 - Experience in a referred article (see the answer Q29)

HAEA's inspection system (Q38, Q39)

- Multi-level inspection system
 - Comprehensive inspections (several areas, groups and days)
 - Specific on-site inspections including ad-hoc inspections and revealing inspections
 - Remote inspections
- Announced and unannounced
- Audits and inspections at contractors
- Inspection of licensing exams of operators
- Annual inspection plan

Results of other IAEA missions: OSART in Paks NPP (Q12)

- IAEA OSART mission in 2014
 - Conclusion: Paks NPP is committed to improve safety
 - 23 issues (15 recommendations and 8 suggestions), 7 GPs
 - Follow-up in 2016: 7 resolved, 16 satisfactory progress

10. Developments since submittal of report

All changes worth mentioning were described in the previous slides

11. Conclusions

Conclusions

Hungary

- is strongly committed to the safe, peaceful application of nuclear energy
- complies with all articles and the spirit of the Convention on Nuclear Safety
- strives for continuous improvement of nuclear safety
- actively and strongly supports all international activities meant to enhance nuclear safety
- strongly supports transparency in nuclear safety

Thank you for your attention!

Presentation of Hungary at the 7th Review Meeting of the CNS